

IP Device Integration Notes

Article ID: V20-12-05-11 Release Date: 05/11/2012

Applied to

GV-System version 8.5.3

Naming and Definition

GV-System	GeoVision Analog and Digital Video Recording Software. In the
	document, GV-System also indicates Multicam System, GV-DVR
	System, GV-NVR System and GV-Hybrid DVR System at the
	same time.

Summary

The document consists of four sections:

- 1. The total frame rate GV-System can support based on different CPU types, codec and resolutions
- 2. Workarounds to increase total frame rates supported by GV-System
- 3. The total frame rate supported by a single hard disk
- 4. The test environment including the computer specifications, hard disk, and bit rate of the video source used to obtain the test results.

1

1. Total Frame Rate Supported

Below are the total frame rates GV-System can support with CPU usage under approximately 70% to ensure performance and stability. The total frame rate varies depending on the CPU types (e.g. Core i7, Core i5, Core i3 or Core 2 Quad), the resolution and compression method (codec) set on the connected IP camera.

When IP devices are set to **dual streams**, the total frame rate supported is increased because you can select lower resolution and codec for live view and set the other stream to high quality video for recording.

In addition, a higher total frame rate can be achieved if your CPU supports **GPU decoding**. GPU decoding can only decode 1.3 MP and 2 MP video sources. When using 32-bit OS, the total frame rate supported is reduced due to limited memory capacity.

Dual Streams

CPU	Resolution	Codec	Total Frame	CPU	GV-System
	Resolution	Couec	Rate (FPS)	Usage (%)	Memory Usage (MB)
	1.3 MP (1280 x 1024)	H.264	960	15	1524
	1.5 Wi (1200 x 1024)	MJPEG	960	24	1800
	2 MP (1920 x 1080)	H.264	960	19	1531
Core i7	2 MF (1920 X 1000)	MJPEG	960	28	1811
2600K	3 MP (2048 x 1536)	H.264	640	12	1540
	5 MF (2040 x 1550)	MJPEG	640	18	1788
	5 MP (2560 x 1920)	H.264	320	9	1513
	5 Wi (2000 x 1920)	MJPEG	320	17	1852
	1.3 MP (1280 x 1024)	H.264	960	34	1783
	1.3 MP (1200 X 1024)	MJPEG	960	50	1851
	2 MD (1020 × 1020)	H.264	960	42	1786
Core i5	2 MP (1920 x 1080)	MJPEG	960	60	1890
2500K	3 MP (2048 x 1536)	H.264	640	19	1772
	3 MF (2048 X 1550)	MJPEG	640	38	1874
	5 MP (2560 x 1920)	H.264	320	13	1773
		MJPEG	320	30	1877
	1.3 MP (1280 x 1024)	H.264	960	43	1710
		MJPEG	960	67	1784
	2 MD (1020 × 1090)	H.264	960	58	1717
Core i3	2 MP (1920 x 1080)	MJPEG	720	67	1594
2120K	3 MP (2048 x 1536)	H.264	640	22	1705
	3 MF (2046 X 1550)	MJPEG	640	46	1747
	5 MP (2560 x 1920)	H.264	320	18	1704
	5 MP (2560 X 1920)	MJPEG	320	30	1828
	1 3 MP (1280 v 1024)	H.264	960	69	1673
	1.3 MP (1280 x 1024)	MJPEG	480	67	1292
	2 MP (1920 x 1080)	H.264	660	70	1487
Core 2 Quad		MJPEG	420	68	1257
Q9400	3 MP (2048 x 1536)	H.264	640	46	1641
		MJPEG	440	69	1447
	5 MP (2560 x 1920)	H.264	320	33	1696
		MJPEG	290	70	1603

Single Stream

CPU	Resolution	Codec	Total Frame	CPU	GV-System
	Resolution	oouco	Rate (FPS)	Usage (%)	Memory Usage (MB)
	1.3 MP (1280 x 1024)	H.264	450	68	1363
		MJPEG	600	69	1368
	2 MP (1920 x 1080)	H.264	270	72	1251
	2 101 (1920 x 1000)	MJPEG	540	68	1368
Core i7	3 MP (2048 x 1536)	H.264	200	68	1348
2600K	3 Wil (2040 X 1000)	MJPEG	400	70	1434
	4 MP (2048 x 1944)	H.264	165	71	1455
	+ Wii (20+0 x 10++)	MJPEG	285	68	1429
	5 MP (2560 x 1920)	H.264	180	68	1892
	5 MF (2500 x 1920)	MJPEG	300	71	1741
	4.2 MD (1290 x 1024)	H.264	330	71	1329
	1.3 MP (1280 x 1024)	MJPEG	450	70	1266
	2 MD (1020 × 1090)	H.264	210	75	1221
	2 MP (1920 x 1080)	MJPEG	330	70	1200
Core i5	3 MP (2048 x 1536)	H.264	140	66	1250
2500K		MJPEG	240	70	1259
	4 MP (2048 x 1944) 5 MP (2560 x 1920)	H.264	120	72	1329
		MJPEG	180	70	1280
		H.264	130	70	1633
		MJPEG	170	69	1423
	1.2 MD (1290 x 1024)	H.264	180	60	1081
	1.3 MP (1280 x 1024)	MJPEG	240	64	1062
	2 MD (1020 × 1090)	H.264	120	67	1044
	2 MP (1920 x 1080)	MJPEG	240	63	1063
Core i3	i3	H.264	80	56	1043
2120K	3 MP (2048 x 1536)	MJPEG	180	66	1121
	4 MP (2048 x 1944)	H.264	75	68	1129
	+ IVIF (2040 X 1944)	MJPEG	135	66	1127
	E MD (0500 + 4000)	H.264	90	70	1360
	5 MP (2560 x 1920)	MJPEG	130	67	1242

4

	1.3 MP (1280 x 1024)	H.264	180	72	1096
	1.3 WF (1200 X 1024)	MJPEG	300	66	1068
	2 MP (1920 x 1080)	H.264	120	74	1062
	2 MF (1920 X 1000)	MJPEG	240	72	1036
Core 2 Quad	3 MP (2048 x 1536)	H.264	80	66	1086
Q9400		MJPEG	180	74	1089
	4 MP (2048 x 1944)	H.264	60	63	1106
		MJPEG	135	72	1100
	5 MP (2560 x 1920)	H.264	70	66	1291
	5 WF (2000 X 1920)	MJPEG	120	69	1179

Single Stream with GPU Decoding

CPU	Resolution	Codec	Total Frame	CPU	GV-System Memory
	Resolution	oodco	Rate (FPS)	Usage (%)	Usage (MB)
64-Bit					
Core i7	1.3 MP (1280 x 1024)		930	69	2588
2600K	2 MP (1920 x 1080)		660	70	2642
Core i5	1.3 MP (1280 x 1024)	H.264	840	69	2664
2500K	2 MP (1920 x 1080)	11.204	600	69	2611
Core i3	1.3 MP (1280 x 1024)		810	67	2701
2120K	2 MP (1920 x 1080)		570	69	2675
32-Bit					
Core i7	1.3 MP (1280 x 1024)		570	72	1505
2600K	2 MP (1920 x 1080)		360	71	1290
Core i5	1.3 MP (1280 x 1024)	H.264	420	73	1248
2500K	2 MP (1920 x 1080)	п.204	270	68	1233
Core i3	1.3 MP (1280 x 1024)		150	69	1291
2120K	2 MP (1920 x 1080)		60	48	1207

Note:

- 1. The test results were obtained using a panel resolution of 1920 x 1080 and 32-channel screen division. The results may vary based on various factors, including actual environment and bitrates.
- 2. GPU decoding test results were obtained using Intel Sandy Bridge chipset.

2. Workarounds to Increase Total Frame Rates

If your CPU capacity is lower than **Core i7**, **Core i5**, **Core i3** or **Core 2 Quad** but wish to reach high frame rates, you will need to sacrifice the codec or resolution as a workaround.

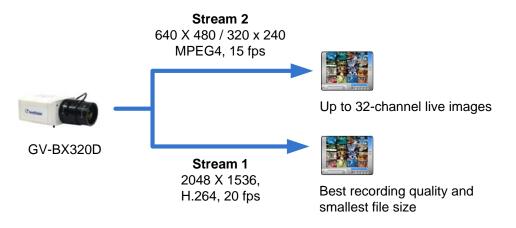
2.1 Changing Compression Method

The better compression method you use for video streaming, the more CPU resource is required to perform **decoding** for live images. The CPU capacity required to **decode** live images is: H.264 > MJPEG or MPEG4. Therefore, changing the codec from H.264 to MJPEG or MPEG4 can greatly increase the total frame rate supported without exceeding 70% CPU usage.

2.2 Using Dual Streams

If the total frame rate cannot be sufficiently increased even after you change the codec, it is highly suggested to use the dual-stream function if available on your IP device.

The **GeoVision H.264-series cameras** feature dual streams, capable of delivering two video streams in a different resolution, codec and frame rate. Using dual streams, you can lower the resolution and codec for live images, but still get the best recording quality at megapixel resolution and the smallest file size compressed with H.264 codec.



Here we use GV-BX320D as an example for dual streaming settings: On GV-BX320D, you can set Stream 1 and Stream 2 to use different resolution and codec.

- Stream 1 (recording) settings: Select 2048 x 1536 (3 MP) resolution for the best recording quality, and H.264 codec for the smallest file size.
- Stream 2 (live view) settings: Select either 640 x 480 (VGA) or 320 x 240 (CIF) resolution depending on your CPU capacity. Higher resolution requires more CPU resource.

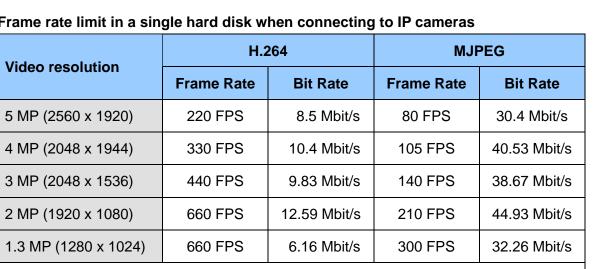
Selecting either MPEG4 or MJPEG is depended on your network condition. Codec with higher compression ratio needs less bandwidth. MPEG4 has higher compression ratio than MJPEG. Therefore, it is recommended to select MPEG4 for network (Internet or LAN) applications.

2.3 Decreasing Resolution

If your IP device does not support the dual-stream function, or you want to keep the current codec setting, you may consider decreasing the image resolution. Decreasing the image resolution can reduce CPU usage and allows the GV-System to achieve higher frame rates.

3. Hard Disk Limitations

The hard disk performance can greatly affect GV-System's performance. When the size of transmitted data is large and exceeds the transfer rate of a hard disk, you may encounter problems such as time gaps, frame dropping, high failure rate of a hard disk and etc. To avoid these problems and have the maximum performance out of GV-System, you should note the total recording frame rate that you can assign to a single hard disk, as listed below:


Software Compression			
Video Bosolution	М	PEG4	
Video Resolution	NTSC	PAL	
CIF	960 FPS	800 FPS	
VGA/D1	480 FPS	400 FPS	
Turbo VGA	416 FPS	400 FPS	
Turbo D1	352 FPS	320 FPS	
Note:			

Frame rate limit in a single hard disk when connecting to analog cameras

- 1. The above data was determined using the default codec MPEG4 and hard disks with average R/W speed above 110 MB/s.
- 2. The data for Turbo VGA and Turbo D1 was determined using GV-1480A Card.

Hardware Compression				
Video Bosolution	H.264			
Video Resolution	NTSC PAL			
D1	480 FPS 400 FPS			
Note: The above data was determined using the default codec H.264, default quality level Q3 and hard disks with average R/W speed above 110 MB/s.				

Frame rate limit in a single hard disk when connecting to IP cameras

Note: The data above was determined using the bit rate listed above and hard disks with average R/W speed above 110 MB/s.

The frame rate limit is based on the resolution and codec of video sources. The higher video resolution you want, the lower frame rate you can assign to a single hard disk. In other words, the higher frame rate you wish to record, the more hard disks you need to install on your system.

In terms of codec, H.264 has much better compression ratio and much smaller file size than MJPEG. Therefore, the video streaming compressed with H.264 has much lower bit rate and thus allows more frame rate.

Note: It is strongly recommended to use two separate hard disks for installing Windows operating system and for storing recorded files.

Here are examples of different recording solutions:

• Using 2 hardware compression GV-4008 Cards, only connecting analog cameras:

If you want to have a total of 480 FPS and make a record at D1 resolution, you will need 2 hard disks. The calculation and hard disk assignments are given below:

Spec. of two (2) GV-4008 Cards	480 FPS for total 16 channels at D1 with H.264
Frame rate limit for one hard disk	480 FPS at D1 with H.264
No. of hard disks required	1 hard disk (480 FPS / 480 FPS)
Hard disk assignments	1 st hard disk for Windows OS
	2 nd hard disk for 1-16 channel recording

• Using 2 software compression GV-1480A Cards, only connecting analog cameras:

If you want to have a total of 480 FPS and make a record at D1 resolution, you will need at least 2 hard disks. The calculation and hard disk assignments are given below:

Spec. of two (2) GV-1480A Cards	480 FPS for total 32 channels at D1 with MPEG4
Frame rate limit for one hard disk	480 FPS at D1 with MPEG4
No. of hard disks required	1 hard disk (480 FPS / 480 FPS)
Hard disk assignments	1 st hard disk for Windows OS
	2 nd hard disk for 1-32 channel recording

• Connecting IP cameras only:

If you want to connect 32 units of GV-BX520D and record at 5 megapixel resolution, you will need at least 3 hard disks. The calculation and hard disk assignments are given below:

Spec. of GV-BX520D	10 FPS at 5 MP with H.264
Frame rate limit for one hard disk	220 FPS at 5 MP with H.264
No. of hard disks required	2 hard disks
	[(10 FPS x 32 units) / 220 FPS)]
Hard disk assignments	1 st hard disk for Windows OS
	2 nd hard disk for channel 1-16 recording
	3 rd hard disk for channel 17-32 recording

• Using 2 hardware compression GV-4008 Cards, connecting a mix of analog and IP cameras:

If you want to record 16 analog cameras at D1 resolution and connect 16 units of GV-BX110D, you will need at least 3 hard disks. The calculation and hard disk assignments are given below:

Spec. of two (2) GV-4008 Cards	480 FPS for total 16 channels at D1 with H.264
Spec. of 16 units of GV-BX110D	480 FPS for total 16 units (30 FPS x 16),
	at 1.3 MP with H.264
Frame rate limit for one hard disk	480 FPS at D1 with H.264, and
	660 FPS at 1.3 MP with H.264
No. of hard disks required	2 hard disks
	(480 FPS / 480 FPS + 480 FPS / 660 FPS)
Hard disk assignments	1 st hard disk for Windows OS
	2 nd hard disk for 1-16 channel recording
	3 rd hard disk for 17-32 channel recording

4. Test Environment

PC specifications used for the test			
Test Computer	Test Computer 1		
OS	Windows 7 Ultimate SP1		
Motherboard	ASRock Z68 Extreme4		
CPU	Core i7 2600K		
Chipset	Intel Z68		
RAM	DDR3 4 GB x 2		
S/W version	GV-System V8.5.3		
Test Computer	2		
OS	Windows 7 Ultimate SP1		
Motherboard	Gigabyte GA-H67A-UD3H-B3		
CPU	Core i5 2500K		
Chipset	Intel H67		
RAM	DDR3 4 GB x 2		
S/W version	GV-System V8.5.3		
Test Computer	3		
OS	Windows 7 Ultimate SP1		
Motherboard	Gigabyte GA-H61M-USB3-B3		
CPU	Core i3 2120K		
Chipset	Intel H61		
RAM	DDR3 4 GB x 2		
S/W version	GV-System V8.5.3		
Test Computer 4			
OS	Windows 7 Ultimate SP1		
Motherboard	Asus P5QL PRO		
CPU	Core 2 Quad Q9400		
Chipset	Intel P43		
RAM	DDR2 1 GB x 2		
S/W version	GV-System V8.5.3		

Bitrate applied for the test of total frame rate		
	H.264	MJPEG
5 MP (2560 x 1920)	8.5 Mbit/s	30.4 Mbit/s
4 MP (2048 x 1944)	10.4 Mbit/s	40.53 Mbit/s
3 MP (2048 x 1536)	9.83 Mbit/s	38.67 Mbit/s
2 MP (1920 x 1080)	12.59 Mbit/s	44.93 Mbit/s
1.3 MP (1280 x 1024)	6.16 Mbit/s	32.26 Mbit/s

Types of hard disk used for the test of hard disk limit

WD Caviar Black, WD1002FAEX (SATA 6 GB/s), 64 MB cache

For details, see http://wdc.com/global/products/specs/?driveID=792&language=1